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Abstract
In this paper a new gradient estimation method is presented which is based on linear regression. Previous con-
textual shading techniques try to fit an approximate function to a set of surface points in the neighborhood of a
given voxel. Therefore a system of linear equations has to be solved using the computationally expensive Gaussian
elimination. In contrast, our method approximates the density function itself in a local neighborhood with a 3D
regression hyperplane. This approach also leads to a system of linear equations but we will show that it can be
solved with an efficient convolution. Our method provides at each voxel location the normal vector and the trans-
lation of the regression hyperplane which are considered as a gradient and a filtered density value respectively.
Therefore this technique can be used for surface smoothing and gradient estimation at the same time.

1. Introduction

In direct volume rendering the quality of the generated im-
age is strongly influenced by the estimation method used for
the normal vector computation. Volumetric data is usually
obtained by sampling continuous objects and after the dis-
cretization the exact surface normals are not available any-
more. Therefore the inclination of the surfaces is estimated
investigating a close neighborhood of a given voxel. A possi-
ble way of evaluation of different normal computation tech-
niques is to discretize continuous geometrical models and to
compare the estimated normals to the exact original ones.
Unfortunately, this strategy cannot be used for practical data
sets, like medical CT scans, because the exact normal vec-
tors are not known. In a typical volume, there are no sharp
edges and the surfaces are rather smooth. Therefore one can
expect that the surfaces and the contours of different organs
are displayed smoothly with reduced staircase artifacts. In
order to fulfill this requirement our method integrates the fil-
tering and the normal computation into one process.

In 3 Yagel overviews several methods for discrete normal
estimation and analyses their performance. Depending on
the neighborhood considered, these techniques can be clas-
sified into two fundamentally different categories as image
space and object space methods.

Image space techniques take only the 2D neighborhood
in the projected image into account, therefore they are view-
dependent. Depth-gradient shading 4 � 5 as a representative of
image space methods, approximates the gradient from the z-
buffer calculating the differences between the depths of the
given and the neighboring pixels. This approach produces
sharp contours where in the neighboring pixels different ob-
jects are visible or where there is a drastic jump between the
depth values. In order to avoid this artifact context sensitive
normal estimation can be used which takes also these object
and slope discontinuities into account. The basic idea of this
approach can be applied to object space techniques too3.

Object space methods estimate the normal according to
the 3D neighborhood of the given voxel. Constant shading
6 which is based on the cuberille method is an early ex-
ample of this category. The voxels are considered as unit
cuboids, and the normals at each point of a boundary sur-
face are the true normals of the corresponding cuboid faces.
Normal-based contextual shading 7 � 8 is based on the cuber-
ille method as well. This technique additionally takes the
orientation of the adjacent visible faces into account increas-
ing the number of possible normal vectors and giving a bet-
ter impression about the inclination of a boundary surface.
Gray-level gradient shading 9 � 10 is used for volumes, where
each voxel represents a gray-level value. The gradient vec-
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tors are estimated according to the neighborhood of the vox-
els using traditional derivative filters 1. Contextual shading
fits a local approximate plane 11 or a biquadratic 12 � 13 func-
tion to the set of points that belong to the same isosurface.
These methods are time-consuming and limited to a certain
neighborhood. Bryant and Krumvieda 11 solve a set of linear
equations by Gaussian elimination in order to obtain an ap-
proximate tangent plane at a given surface point. Webber’s
technique12 � 13 is similar, but in a 26-neighborhood the sur-
face is approximated by a biquadratic function producing
accurate results for objects with C1 continuous faces.

According to our approach the normal estimation is ex-
tended to a 4D linear regression problem and not restricted
to the approximation of an isosurface. In a local neighbor-
hood the density function is approximated with a 3D hyper-
plane taking not only the surface points but all the neigh-
boring voxels into account, using an appropriate weighting
function. Since a plane is defined by a normal vector and
a translation, a 4D linear equation system is solved in order
to minimize the error of the approximation. This seems to be
more complicated than the previous contextual shading tech-
niques but we will show that it leads to a computationally ef-
ficient convolution, thus the linear equation does not need to
be solved using the traditional time-consuming methods of
linear algebra, like Gaussian elimination. Furthermore, our
technique provides not only an estimated normal vector but
a translation value as well, which can be considered as a fil-
tered value for the given voxel location. By substituting the
original density with the filtered value, smooth surfaces can
be displayed and the staircase artifacts can be reduced.

In the next section the mathematical background of our
regression-based normal-estimation method is discussed. In
section 3 some ideas are presented how to use the approxi-
mating hyperplanes for interpolation inside a cubic cell in-
stead of using the traditional trilinear interpolation. Section
4 describes how to weight the error contributions of neigh-
boring voxels in calculation of the global regression error. In
section 5 we present the implementation results and in sec-
tion 6 we summarize the contribution of this paper.

2. Linear regression

Assuming that the origin of the coordinate system is trans-
lated into the position of the current voxel, the density func-
tion f

�
x � y � z � in a close neighborhood can be approximated

linearly according to the following formula:

f
�
x � y � z ��� A � x � B � y � C � z � D � (1)

This approximation tries to fit a 3D regression hyperplane
onto the measured density values assuming that the density
function changes linearly in the direction of the plane nor-
mal n �
	A � B � C � . The value of D which is the approximate

density value at the origin of the local coordinate system de-
termines the translation of the plane.

Evaluating this approximation for the voxels of the local
neighborhood the error can be measured using the following
mean square error calculation:

E
�
A � B � C � D ���

26

∑
k 
 0

wk �
�
A � xk � B � yk � C � zk � D � fk � 2 �

(2)

The coordinates xk, yk, zk denote the components of the
neighboring voxel locations in the coordinate system trans-
lated into the center of the subvolume representing the local
neighborhood. The measured density value in the kth voxel
position is denoted by fk. The error of the kth sample con-
tributes to the global mean square error with weight wk. The
weighting function assumed to be an arbitrary, spherically
symmetric function, which is monotonically decreasing as
the distance from the origin is getting larger.

The k indices are assigned to the neighboring voxel lo-
cations row-continuously (Figure 1). For the sake of clarity
but without loss of generality, we assume that only the 26-
neighborhood is taken into account. In this case, the index k
of voxel v[x,y,z] in the 26-neigborhood of the current voxel
c 	 0 � 0 � 0 � is defined as:

k � � z � 1 ��� 9 � � y � 1 ��� 3 � x � 1 � (3)
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Figure 1: Indexing of the neighboring voxels.

In order to minimize the 4D error function E
�
A � B � C � D � ,

the partial derivatives according to the four unknown vari-
ables A, B, C, D are investigated:
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∂E
∂A

� 2 �
26

∑
k 
 0

wk �
�
A � xk � B � yk � C � zk � D � fk ��� xk � (4)

∂E
∂B

� 2 �
26

∑
k 
 0

wk �
�
A � xk � B � yk � C � zk � D � fk ��� yk � (5)

∂E
∂C

� 2 �
26

∑
k 
 0

wk �
�
A � xk � B � yk � C � zk � D � fk ��� zk � (6)

∂E
∂D

� 2 �
26

∑
k 
 0

wk �
�
A � xk � B � yk � C � zk � D � fk � � (7)

In a minimum location of the error function these partial
derivatives equal to zero. This condition leads to the follow-
ing system of linear equations:

M �

���
�

A
B
C
D

� ��
� �

���
�

∑wk fkxk

∑wk fkyk

∑wk fkzk

∑wk fk

� ��
� � (8)

where

M �

���
�

∑wkx2
k ∑wkxkyk ∑wkxkzk ∑wkxk

∑wkxkyk ∑wky2
k ∑wkykzk ∑wkyk

∑wkxkzk ∑wkykzk ∑wkz2
k ∑wkzk

∑wkxk ∑wkyk ∑wkzk ∑wk

� ��
� �

Note that the elements of the coefficient matrix M are con-
stants, thus only the right side of the matrix equation depends
on the measured fk values. Assuming that the voxels are lo-
cated at regular grid points, where the sampling distance is
the same in the three major directions the equation is further
simplified. In this case, the coefficient matrix M is a diagonal
matrix since all the elements except the diagonal ones equal
to zero because of symmetry reasons (xk � yk � zk ��� � 1 � 0 � 1 	
and the weights wk are symmetric to the origin, therefore
each non-zero term in the sum has a pair with an opposite
sign):

M �

���
�

∑wkx2
k 0 0 0

0 ∑wky2
k 0 0

0 0 ∑wkz2
k 0

0 0 0 ∑wk

� ��
� � (9)

Such a linear equation can be solved very easily, since
the inverse of the coefficient matrix is also a diagonal ma-
trix containing in the diagonal the reciprocals of the original
matrix elements. Thus the unknown vector 	A � B � C � D � is cal-
culated by weighting the components of the right side. Let us
introduce the following weights for each unknown variable:

wA � 1

∑26
k 
 0 wkx2

k

� wB � 1

∑26
k 
 0 wky2

k

�

wC � 1

∑26
k 
 0 wkz2

k

� wD � 1

∑26
k 
 0 wk

� (10)

The solution of the matrix equation leads to a simple lin-
ear convolution:

A � wA

26

∑
k 
 0

wk fkxk � B � wB

26

∑
k 
 0

wk fkyk �

C � wC

26

∑
k 
 0

wk fkzk � D � wD

26

∑
k 
 0

wk fk � (11)

Assuming that the sampling distances along the three ma-
jor axes are the same the weights wA, wB, wC are equal to
each other. Thus these weights can be ignored since the es-
timated gradient 	A � B � C � has to be normalized anyway in
order to obtain a surface normal of unit length. The gradi-
ent magnitude might also be used in the rendering stage for
emphasizing the boundaries of isosurfaces. In this case the
weights wA, wB, wC can be ignored as well, since only the
relative differences between the gradient magnitudes are im-
portant.

Note that the value of variable D is a normalized weighted
sum of the measured values in the local neighborhood thus it
can be considered as a filtered value. This is the result of the
approximation in the origin of the local coordinate system
( f
�
0 � 0 � 0 � � D). Together with the approximate normal com-

ponents these filtered values are stored in a newly generated
volume. In this volume there is a strong correlation between
the data values and the corresponding normals since in the
grid points the error of the linear approximation which has
been assumed in the normal estimation is minimal. There-
fore in the ray casting process this volume is used instead of
the original one. In a typical volume-rendering application,
in order to reduce the noise in the data set and to smooth
the surfaces low-pass filtering is used. This filtering process
is completely separated from the gradient estimation. In our
approach the smoothing and the normal estimation are per-
formed in one step in a consistent way, using the same func-
tion for weighting the contribution of the neighboring vox-
els.

3. Interpolation

In direct volume rendering the approximate gradient vectors
are usually calculated in advance at the grid points, in a pre-
processing step. In the ray casting stage, a normal vector at
an arbitrary sample point is calculated from the gradients of
the eight closest voxels using trilinear interpolation. Wher-
ever there is a big difference between the gradients at the
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eight corner voxels of the given cubic cell the typical stair-
case artifacts appear.

In order to avoid this problem the linear regression can be
evaluated at the sample points along the viewing rays as well
yielding a continuous reconstruction of the density function.
Generally, the coefficient matrix M in Equation 8 will not be
diagonal because of the asymmetric weights (the distances
from the grid points of the neighborhood are different). Fur-
thermore the entries depend on the position. Although the
solution of the linear equation requires just a matrix multi-
plication, the evaluation of the inverse coefficient matrix is
rather expensive computationally. This problem can be han-
dled by dividing each cell into subcells with a regular sub-
grid (Figure 2). The inverse matrix is evaluated in advance
for each corner point of the subcells. This has to be done only
once for one generic cell. In the ray casting process trilinear
interpolation is applied for the subcells, where the normals
at the corner points are calculated using the precalculated in-
verse matrices. This modification provides a more accurate
approximation of the density function although it increases
the rendering time.

trilinear interpolation

linear regression

Figure 2: Subdivision of the original grid.

Another alternative is to use the approximating hyper-
planes for density interpolation. First a density d0 is com-
puted from the filtered values at the eight closest grid points
(which are the translations of the approximating hyper-
planes), using trilinear interpolation. The obtained value d0
cannot be larger than the maximum corner density of a cubic
cell. Taking also the inclination of the surface into account
another density d1 is calculated the following way. The cur-
rent sample location is substituted into the plane equations
at the eight closest grid points and d1 is trilinearly inter-
polated from the obtained values. Since this computation is
not restricted to a cubic cell, the value d1 might be larger
than the maximum corner density depending on the influ-
ence of the neighboring cells. In order to sample the den-
sities along the rays an arbitrary normalized weighted sum
µ0 � d0 �

�
1 � µ0 ��� d1 can be used. Increasing the weight µ0

the influence of the local inclination is getting stronger and
setting µ0 to one results the traditional trilinear interpolation.
In our experiments we used the value µ0 � 0 � 5 in order to in-
terpolate the densities with a quadratic function. It can be
considered as an acceptable compromise between trilinear
and B-spline interpolation.

4. The weighting function

The weighting function wk of the convolution can be an ar-
bitrary, spherically symmetric function which is, apart of the
origin, monotonically decreasing as the distance from the
origin is getting larger. For example, the reciprocal of the
square of the Euclidean (or Manhattan) distance can be used
for weighting the neighboring voxels:

wk �
�

0 if k � 13
1
dk

otherwise, (12)

where dk is the distance of the kth neighboring voxel from
the central voxel. Note that the classical gradient estimation
based on central differences is the special case of our method
using the following weighting function:

wk �����
��

1 if k � 4 or k � 22
or k � 10 or k � 16
or k � 12 or k � 14

0 otherwise.

(13)

Thürmer‘s technique 2 which has been proposed for nor-
mal estimation in binary volumes is also a special case of
our method. According to this approach the Nx, Ny, and Nz

components of the estimated normal vector are calculated
according to the following formula:

Nx �
26

∑
k 
 0

wkσkxk � Ny �
26

∑
k 
 0

wkσkyk � Nz �
26

∑
k 
 0

wkσkzk � (14)

where σk � 1 if the value of the kth binary voxel in the
certain neighborhood is one and zero otherwise. Having a
binary volume the density function f takes only the values
of zero and one therefore in this special case our method
provides the same normal components. It can be considered
as a generalization of the previous normal estimation tech-
niques, and can be used for gray-scale and binary data sets
as well. Furthermore, our approach provides also a filtered
value which is consistent to the estimated normal vector.
Substituting the original densities with the filtered values the
typical staircase artifacts of direct volume rendering can be
reduced.

5. Implementation

The proposed normal estimation method has been tested on
binary and gray-scaled data sets. Figure 3 shows a binary
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Figure 3: Normal estimation on binary volume data using central differences (left), Thürmer’s method (middle), and linear
regression, where µ0 � 0 � 5 (right).

volume of resolution 20 � 20 � 20 obtained by discretization
of a sphere.

The left image was rendered calculating central differ-
ences to estimate the surface normals, therefore the typical
staircase artifacts appear. In the middle image, where nor-
mals are estimated from the 26-neighborhood of the vox-
els using Thürmer’s method the surface is much smoother
but the contour of the object has the same discontinuities
as in the left image. The right image was rendered using
our method, where the regression plane at each voxel loca-
tion was calculated from the voxels of the 26-neighborhood.
According to the linear regression the original data values
are allowed to be modified in order to minimize the error
of the approximation. Therefore the contour of the object is
smoother and approximates the original contour much bet-
ter than in the previous two images. Processing binary vol-
umes, Thürmer’s technique 2 and our method provides ex-
actly the same normal vectors at the grid points. Neverthe-
less, the intersection points, where the normals are evaluated
using trilinear interpolation, are different since the linear re-
gression slightly changes the original data values. Although
the estimated normal components are the same the surface
in the right image is much smoother since the calculated in-
tersection points are closer to the exact intersection points of
the sphere and the viewing rays. These images clearly show
that in rendering binary data sets not only the estimated nor-
mal components are important but also the sample locations,
where the interpolated normals are evaluated.

Figure 4 shows a gray-scale data set obtained by a CT
scan of a lobster. The data set has been rendered calculating
central differences (left image) and using linear regression
(right image) for gradient estimation. Although, in the right
image some high frequency details are filtered, the contours
of the different parts of the body are much sharper then in
the left one, therefore they can be distinguished more easily.
For example, the location and the shape of the legs can be
perceived much better in the right image providing stronger

spatial impression. In contrast, the left image contains some
noisy regions, where the topology of the object cannot be
recognized at all.

Having high resolution data sets, it is worthwhile to take
a larger neighborhood into account for the linear regression
calculation without significant loss of high frequency details.
Figure 5 (see color plates) shows a human skull segmented
from a CT scan of resolution 256 � 256 � 225. The left im-
age was rendered calculating the normals from the 33 neigh-
borhood while in the right image the normals were estimated
according to the 43 neighborhood. Note that the top of the
skull in the right image is much smoother than in the left
one and the staircase artifacts are less recognizable, while in
high-frequency areas there is no significant difference.

Our method has been tested using also complex transfer
functions. The images in Figure 6 (see color plates) have
been rendered with an opacity function emphasizing the soft
tissue and the bone. Using linear regression for gradient esti-
mation (right) rather than calculating the central differences
(left) the rendered image seems to be more realistic because
of the antialiasing.

6. Conclusion

In this paper a new gradient estimation approach has been
presented which is based on 4D linear regression. It has been
shown that it is worthwhile to use the same function weight-
ing the contribution of the neighboring voxels for filtering
and for gradient computation yielding strong correlation be-
tween the filtered data values and the estimated normal vec-
tors. Some previous normal computation techniques are spe-
cial cases of our method thus it can be considered as a gen-
eralized solution with a clarified mathematical background.
The presented technique can be used for gray-scale and bi-
nary data sets as well. Previous contextual shading methods
are rather expensive computationally since they try to fit a
linear or biquadratic function on the set of surface points
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Figure 4: A lobster rendered calculating central differences for gradient estimation (left) and using linear regression (right).

and it requires the solution of a system of linear equations.
In contrast, our approach approximates the density function
itself with a 3D regression hyperplane and it leads to a com-
putationally efficient convolution.
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Figure 5: Rendering of a human skull taking the 33 (left) and the 43 (right) neighborhood into account in the normal estimation
using linear regression.

Figure 6: Rendering of the kidneys and the skeleton using central differences (left) and linear regression (right) for gradient
estimation.
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