Proof: We first show that every recursive language can be enumerated in lexicographical order. Let L be a recursive language over an alphabet Σ. Then it is accepted by some machine M that halts for all input strings. A machine E that enumerates L in lexicographical order can be constructed from M and the machine E_{Σ^*} that enumerates Σ^* in lexicographical order. The machine E is a hybrid, interleaving the computations of M and E_{Σ^*}. The computation of E consists of the following loop:

1. The machine E_{Σ^*} is run, producing a string $u \in \Sigma^*$.
2. M is run with input u.
3. If M accepts u, u is written on the output tape of E.
4. The generate-and-test loop continues with step 1.

Since M halts for all inputs, E cannot enter a nonterminating computation in step 2. Thus, each string $u \in \Sigma^*$ will be generated and tested for membership in L.

Now we show that any language L that can be enumerated in lexicographical order is recursive. This proof is divided into two cases based on the cardinality of L.

Case 1: L is finite. Then L is recursive since every finite language is recursive.

Case 2: L is infinite. The argument is similar to that given in Theorem 8.8.2 except that the ordering is used to terminate the computation. As before, a $(k+1)$-tape machine M accepting L can be constructed from a k-tape machine E that enumerates L in lexicographical order. The additional tape of M is the input tape; the remaining k tapes allow M to simulate the computations of E. The ordering of the strings produced by E provides the information needed to halt M when the input is not in the language. The computation of M begins with a string u on its input tape. Next M simulates the computation of E. When the simulation produces a string w, M compares u with w. If $u = w$, then M halts and accepts. If w is greater than u in the ordering, M halts rejecting the input. Finally, if w is less than u in the ordering, then the simulation of E is restarted to produce another element of L and the comparison cycle is repeated.

Exercises

1. Let M be the Turing machine defined by

<table>
<thead>
<tr>
<th>δ</th>
<th>B</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1, B, R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td>q_2, B, L</td>
<td>q_1, a, R</td>
<td>q_1, c, R</td>
<td>q_1, c, R</td>
</tr>
<tr>
<td>q_2</td>
<td>q_2, c, L</td>
<td>q_2, b, L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Trace the computation for the input string $aabca$.
b) Trace the computation for the input string $bcbc$.
c) Give the state diagram of M.

d) Describe the result of a computation in M.

2. Let M be the Turing machine defined by

<table>
<thead>
<tr>
<th>δ</th>
<th>B</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1, B, R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td>q_1, B, R</td>
<td>q_1, a, R</td>
<td>q_1, b, R</td>
<td>q_1, c, L</td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
<td>q_2, b, L</td>
<td>q_2, a, L</td>
</tr>
</tbody>
</table>

a) Trace the computation for the input string $abcab$.

b) Trace the first six transitions of the computation for the input string $abab$.

c) Give the state diagram of M.

d) Describe the result of a computation in M.

3. Construct a Turing machine with input alphabet \{a, b\} to perform each of the following operations. Note that the tape head is scanning position zero in state q_f whenever a computation terminates.

- a) Move the input one space to the right. Input configuration q_0BuB, result q_fBBuB.
- b) Concatenate a copy of the reversed input string to the input. Input configuration q_0BuB, result q_fBu_iuB.
- c) Insert a blank between each of the input symbols. For example, input configuration q_0BabaB, result $q_fBaBbBaB$.
- d) Erase the b's from the input. For example, input configuration $q_0BbabaababB$, result q_fBaaaB.

4. Construct a Turing machine with input alphabet \{a, b, c\} that accepts strings in which the first c is preceded by the substring aaa. A string must contain a c to be accepted by the machine.

5. Construct a Turing machine with input alphabet \{a, b\} to accept each of the following languages by final state.

- a) $a^ib^j | i \geq 0, j \geq i$
- b) $a^ib^ilc^j | i, j > 0$
- c) Strings with the same number of a's and b's
- d) $uu^R | u \in \{a, b\}^*$
- e) $uu | u \in \{a, b\}^*$

6. Modify your solution to Exercise 5(a) to obtain a Turing machine that accepts the language $a^ib^j | i \geq 0, j \geq i$ by halting.

7. An alternative method of acceptance by final state can be defined as follows: A string u is accepted by a Turing machine M if the computation of M with input u enters
Chapter 9 Turing Computable Functions

Exercises

1. Construct Turing machines with input alphabet \(\{a, b\} \) that compute the specified functions. The symbols \(u \) and \(v \) represent arbitrary strings over \(\{a, b\}^* \).
 a) \(f(u) = aaa \)
 b) \(f(u) = \begin{cases} a & \text{if } \text{length}(u) \text{ is even} \\ b & \text{otherwise} \end{cases} \)
 c) \(f(u) = u^R \)
 d) \(f(u, v) = \begin{cases} u & \text{if } \text{length}(u) > \text{length}(v) \\ v & \text{otherwise} \end{cases} \)

2. Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_f) \) be a Turing machine that computes the partial characteristic function of the language \(L \). Use \(M \) to build a standard Turing machine that accepts \(L \).

3. Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, F) \) be a standard Turing machine that accepts a language \(L \). Construct a machine \(M' \) that computes the partial characteristic function of \(L \). Recall that the tape of \(M' \) must have the form \(q_f B 0B \) or \(q_f B 1B \) upon the completion of a computation of \(\hat{x}_L \).

4. Let \(L \) be a language over \(\Sigma \) and let
 \[\chi_L(u) = \begin{cases} 1 & \text{if } u \in L \\ 0 & \text{otherwise} \end{cases} \]

be the characteristic function of \(L \).
 a) If \(\chi_L \) is Turing computable, prove that \(L \) is recursive.
 b) If \(L \) is recursive, prove that there is a Turing machine that computes \(\chi_L \).

5. Construct Turing machines that compute the following number-theoretic functions and relations. Do not use macros in the design of these machines.
 a) \(f(n) = 2n + 3 \)
 b) \(\text{half}(n) = \lfloor n/2 \rfloor \) where \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \)
 c) \(f(n_1, n_2, n_3) = n_1 + n_2 + n_3 \)
 d) \(\text{even}(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{otherwise} \end{cases} \)
 e) \(\text{eq}(n, m) = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{otherwise} \end{cases} \)
 f) \(\text{lt}(n, m) = \begin{cases} 1 & \text{if } n < m \\ 0 & \text{otherwise} \end{cases} \)

6. Construct the configuration:
 a) ZR;
 b) FL;
 c) E;
 d) T; u
 e) BRI
 f) INI

7. Use the machines:
 a) \(f(n) \)
 b) \(f(n) \)
 c) \(f(n) \)
 d) \(f(n) \)
 e) \(f(n) \)

8. Design the machine
 a) \(g(n) \)
 b) \(p(n) \)
 c) \(d(n) \)

9. Trace
 a) \(n \)
 b) \(n \)
 c) \(n \)

10. Describe:
 a) \(\mu \)
 b) \(\rho \)
 c) \(m \)
 d) \(m \)