CSC445, Quiz #1 on Languages
Instructor: Dr. Hasmik Gharibyan

Name___Score________

Total points 16.

Fill in the answers.

1. (2.5 points: 0.5 point for each) Given the alphabet $\Sigma = \{11, 2, 33\}$.
 Can we say that 1112222333 is a string over Σ? (yes/no)________
 Can we say that 112233 is a string over Σ? (yes/no)________
 Can we say that λ is a string over Σ? (yes/no)________
 Can we say that $\{\lambda\}$ is a language over Σ? (yes/no)________
 Can we say that \emptyset is a language? (yes/no)________

2. (1.5 points: 0.5 point for each) Given strings u and v over the alphabet Σ.
 Can we say that $(uv)^R = u^Rv^R$? (yes/no).________
 Can we say that $uv = vu$? (yes/no).________
 Can we say that for any $i > 0$ natural number $(uv)^i = u^i v^i$? (yes/no).________

3. (1 point) Given the recursive definition of a language L over the alphabet $\{a, b\}$
 Basis: $b \in L$
 Recursive step: if $u \in L$ then $au \in L$ and $bu \in L$.
 Closure: a string is in L if it can be obtained from the basic element by finite number of applications of the recursive step.

 Check all the strings that are strings of L (one wrong answer will cost you the point)
 _____aaa, _____abbb, ____ababab, ____abababa, _____bbbaaa, ____aaabbb, ____

4. (1 point) Given the following regular expressions over the alphabet $\{a, b\}$
 1) $(a \cup b)^*$ 2) $(a^*b^*)^*$ 3) $(a^*b^* \cup b^*a^*)^*$
 Which regular expressions are equivalent? Check the correct answer.
 _____ 1) and 2) are equivalent, but they are not equivalent to 3).
 _____ 1) and 3) are equivalent, but they are not equivalent to 2).
 _____ 2) and 3) are equivalent, but they are not equivalent to 1).
 _____ there are no equivalent regular expressions among those listed.
 _____ all listed regular expressions are equivalent to each other.

5. (1 point) Given a language over the alphabet $\{a, b, c\}$ defined with the help of a regular expression
 $a^*b^* \cup c^+$
 Check all the strings that are strings of L (one wrong answer will cost you the point)
 _____aaa, _____aaabbbcccc, ____ababab, ____babababa, _____bbbaaa, ____aaabbb, ____

6. (1 point) Given set $X = \{a, b, c\}$.
 How many elements has the set X^5, (give a number)_____
7. (1 point) Fill in the answer: $\emptyset^* = ______$

8. (1 point) Given X and X^* sets.
 How can X^* be obtained with the help of these two sets?
 Give the formula: $X^* = ______$

9. (1 point) Given the alphabet $\Sigma = \{a, b, c\}$. Is Σ^* countable (yes/no)?_____

10. (1 point) Given the alphabet $\Sigma = \{a, b, c\}$.
 Is the set of all possible languages over Σ countable (yes/no)?_____

11. (1 point) Given languages $X = \{aaa, bbb, ccc\}$, $Y = \{a, b, c, aaa\}$ over the alphabet $\Sigma = \{a, b, c\}$.
 Is the language $L = X \cap Y$ a regular set over Σ? (yes/no)_____

12. (1 point) Given alphabet $\Sigma = \{a, b\}$. Is $(a \cup b)^* bb (a \cup b)^* \cap a (a \cup b)^* a$ a regular expression over the alphabet Σ? (yes/no)_____

13. (1 point) List the basic regular sets over the given alphabet Σ (the sets mentioned in the basis of the recursive definition of a regular set over alphabet Σ).

 __

14. (1 point) List the set operations that are used in the recursive step of the recursive definition of a regular set over the alphabet Σ (the set operations that are used to build new regular sets from the known ones).

 __