1) Given the following piece of diagram of a finite automaton. Give the piece of expression graph after deleting the node q_4 according to the algorithm 7.2.2.

\[\text{before:} \quad \text{after:} \]

2) Given a subset of rules of a regular grammar:

\[A \rightarrow aA \mid bA \mid a \]

Build the piece of diagram of NFA for these rules according to the “Algorithm of construction of NFA from a regular grammar”.

3) Given a piece of diagram (B is an accepting state)

\[A \xrightarrow{a} B \]

Give the subset of rules (for this piece) of the corresponding grammar, built according to the “Algorithm of construction of a regular grammar from NFA”.

4)(2 points: 1 point each) Given two not regular languages over $\Sigma = \{a,b\}$:

$L_1 = \{ w \in \Sigma^* \mid \text{the number of } a\text{'s in } w \text{ is equal to the number of } b\text{'s} \}$

$L_2 = \{ w \in \Sigma^* \mid \text{the number of } a\text{'s in } w \text{ is not equal to the number of } b\text{'s} \}$

a) Is the language $L = L_1 \cup L_2$ regular (yes/no)?

b) Is the language $L = L_1 \cap L_2$ regular (yes/no)?

5) Given two regular languages: L_1 and L_2. Language L is defined as $L = (L_1 \cap L_2)^*$

Can we say that L is always regular? (yes/no)
6) (3 points: 1 point each) Is it safe to say that

 a) a regular set over an alphabet \(\Sigma \) can always be generated by a regular grammar with \(\Sigma \) alphabet? (yes/no)_________

 b) the language of a DFA with alphabet \(\Sigma \) is a regular set over \(\Sigma \)? (yes/no)_________

 c) a language accepted by Finite Automaton can always be generated by a regular grammar? (yes/no)_________

7) To prove that a language is a regular language, it is enough to construct an NFA-\(\lambda \) that accepts it. (true/false)________

8) (3 points: 1 point each) Given a regular language \(L \). According to Pumping Lemma (PL) for regular languages, if we take some string \(z \in L \) with length \(k \) or more (where \(k \) is the number of states in the DFA that accepts \(L \)), then we can decompose it into three parts: \(z = uvw \) etc.

 a) Is \(z' = uw \) a string in \(L \)? (yes/no)_________

 b) Let \(z = a^{k-1}b^{k+1} \) is the considered string of \(L \).
 Can substring \(v \) contain more that one \(b \)? (yes/no)_________

 c) Let \(z = a^{k-1}b^{k+1} \) is the considered string of \(L \).
 Can substring \(w \) contain letter \(a \)? (yes/no)_________

9) To show that a language is regular, the Pumping lemma for regular languages must be used (true/false).________

10) Given a DFA \(M \) with alphabet \(\Sigma \). Let \(M \) has \(k \) states. If \(M \) doesn’t accept any string of length less than \(k \) over the alphabet \(\Sigma \), then \(L(M) \) is empty. (true/false)________