Fill in the answers.

1. (2.5 points: 0.5 point for each) Given the alphabet \(\Sigma = \{ 11, 2, 33 \} \).
 Can we say that 1112222333 is a string over \(\Sigma \)? (yes/no) ____ NO
 Can we say that 112233 is a string over \(\Sigma \)? (yes/no) ____ YES
 Can we say that \(\lambda \) is a string over \(\Sigma \)? (yes/no) ____ YES
 Can we say that \(\{ \lambda \} \) is a language over \(\Sigma \)? (yes/no) ____ YES
 Can we say that \(\emptyset \) is a language? (yes/no) ____ YES

2. (1.5 points: 0.5 point for each) Given strings \(u \) and \(v \) over the alphabet \(\Sigma \).
 Can we say that \((uv)^R = u^Rv^R \) ? (yes/no) ____ NO
 Can we say that \(uv = vu \) ? (yes/no) ____ NO
 Can we say that for any \(i > 0 \) natural number \((uv)^i = u^iv^i \) ? (yes/no) ____ NO

3. (1 point) Given the recursive definition of a language \(L \) over the alphabet \(\{a, b\} \)
 Basis: \(b \in L \)
 Recursive step: if \(u \in L \) then \(au \in L \) and \(bu \in L \).
 Closure: a string is in \(L \) if it can be obtained from the basic element by finite number of applications of the recursive step.
 Check all the strings that are strings of \(L \) (one wrong answer will cost you the point)
 ____aaa, _X_abbb, ___X_ababab, ____abababa, ______bbbaaa, ___X_aababb, _____\lambda

4. (1 point) Given the following regular expressions over the alphabet \(\{a, b\} \)
 1) \((a \cup b)^* \)
 2) \((a^*b^*)^* \)
 3) \((a^*b^* \cup b^*a^*)^* \)
 Which regular expressions are equivalent? Check the correct answer.
 ____ 1) and 2) are equivalent, but they are not equivalent to 3).
 ____ 1) and 3) are equivalent, but they are not equivalent to 2).
 ____ 2) and 3) are equivalent, but they are not equivalent to 1).
 ____ there are no equivalent regular expressions among those listed.
 ___X___ all listed regular expressions are equivalent to each other.

5. (1 point) Given a language over the alphabet \(\{a, b, c\} \) defined with the help of a regular expression
 \(a^*b^* \cup c^+ \)
 Check all the strings that are strings of \(L \) (one wrong answer will cost you the point)
 ____X_aaa, ___aaabbbccc, ___ababab, ____bababa, ______bbbaaa, ___X_aaabbb, _____\lambda

6. (1 point) Given set \(X = \{a, b, c\} \).
 How many elements has the set \(X^5 \), (give a number) __3^5__
7. (1 point) Fill in the answer: $\emptyset^* = _{\{\lambda\}}___\

8. (1 point) Given X and X^* sets.
 How can X^* be obtained with the help of these two sets?
 Give the formula: $X^* = _{XX^*}_

9. (1 point) Given the alphabet $\Sigma=\{a,b,c\}$. Is Σ^* countable (yes/no)? _YES_

10. (1 point) Given the alphabet $\Sigma=\{a,b,c\}$.
 Is the set of all possible languages over Σ countable (yes/no)? _NO_

11. (1 point) Given languages $X = \{aaa, bbb, ccc\}$, $Y = \{a, b, c, aaa\}$ over the alphabet $\Sigma = \{a,b,c\}$.
 Is the language $L = X \cap Y$ a regular set over Σ? (yes/no) _YES_

12. (1 point) Given alphabet $\Sigma = \{a,b\}$. Is $(a \cup b)^* bb (a \cup b)^* \cap a (a \cup b)^* a$ a regular
 expression over the alphabet Σ? (yes/no) _NO_

13. (1 point) List the basic regular sets over the given alphabet Σ (the sets mentioned in
 the basis of the recursive definition of a regular set over alphabet Σ).
 \emptyset, $\{\lambda\}$, $\{a\}$ for every $a \in \Sigma$ _________________________________

14. (1 point) List the set operations that are used in the recursive step of the recursive
 definition of a regular set over the alphabet Σ (the set operations that are used to build
 new regular sets from the known ones).
 Union, Concatenation, Kleene Star _________________________________