Picture 1. Diagram of a DFA \(M = (Q, \Sigma, \delta, q_0, F) \)

1. (3 points: 0.5 point each) Given the DFA \(M = (Q, \Sigma, \delta, q_0, F) \) as defined in the picture 1.
 a) Define the following components of the mathematical system \(M \)
 (no mistakes for the credit).
 \[
 Q = \{ q_0, q_1, q_2, q_3 \} \quad \Sigma = \{ a, b, c \} \quad F = \{ q_2 \}
 \]
 b) Define the value of the transition function \(\delta \) for the pair \([q_1, a]\) : \(\delta(q_1, a) = \quad q_3 \quad \)
 c) Given a string \(w \in \Sigma^* \). The DFA \(M \) is processing \(w \) and finishing the work in the \(q_3 \) state rejecting \(w \). Give the starting instantaneous machine configuration of \(M \) (the configuration specifying \(M \) at the moment when the work starts) \([q_0, w] \)
 d) Give the ending instantaneous machine configuration of \(M \) after processing the string \(w \) from the previous question. \([q_3, \lambda] \)
 e) Given string \(w \in \Sigma^* \). Let \(w \in L(M) \). Give the value of the extended transition function, when \(M \) (in the picture) processes \(w \). \(\hat{\delta}(q_0, w) = \quad q_2 \quad \)
 f) Is the DFA \(M \) in the picture completely deterministic? (yes/no) yes

2. (2 points: 0.5 point each) Circle the correct answer.
 a) second argument of the transition function \(\delta \) of a DFA is an element of the set
 \[
 Q \quad Q \cup \{ \lambda \} \quad P(Q) \quad \Sigma \quad \Sigma^* \quad \Sigma \cup \{ \lambda \} \quad F
 \]
 b) the result of the transition function \(\delta \) of a DFA is an element of the set
 \[
 Q \quad Q \cup \{ \lambda \} \quad P(Q) \quad \Sigma \quad \Sigma^* \quad \Sigma \cup \{ \lambda \} \quad F
 \]
 c) second argument of the extended transition function \(\hat{\delta} \) of a DFA is an element of the set
 \[
 Q \quad Q \cup \{ \lambda \} \quad P(Q) \quad \Sigma \quad \Sigma^* \quad \Sigma \cup \{ \lambda \} \quad F
 \]
 d) the result of the extended transition function \(\hat{\delta} \) of a DFA is an element of the set
 \[
 Q \quad Q \cup \{ \lambda \} \quad P(Q) \quad \Sigma \quad \Sigma^* \quad \Sigma \cup \{ \lambda \} \quad F
 \]
3. (1 point) The set \(\{ w \in \Sigma^* \mid [q_0, w] \xrightarrow{\star} [q_f, \lambda], \text{ where } q_f \in F \} \) is called the __language___ of the DFA \(M = (Q, \Sigma, \delta, q_0, F) \).

4. (1 point) Given the following incomplete deterministic DFA over the alphabet \{a,b\}:

\[M: \]

\[a \quad a \quad b \quad a \quad b \quad a, b \]

\[q_{error} \]

Make the machine completely deterministic (make additions to the diagram).

5. (1 point) Given a DFA \(M = (Q, \Sigma, \delta, q_0, F) \). The language of \(M \) is \(L(M) \). Define the machine \(M_1 \) such that \(L(M_1) = \overline{L(M)} \) (complement of \(L(M) \)).

\[M_1 = (Q, \Sigma, \delta, q_0, \overline{F}) \].

Note that \(\overline{F} \) is the complement of \(F \) with respect to \(Q \).

6. (1 point) Specify the language of a completely deterministic DFA \(M \) with an alphabet \(\Sigma \), whose all states are final states. \(L(M) = \Sigma^* \).

7. (1 point) Specify the language of a DFA \(M \) with alphabet \(\Sigma \), that doesn’t have any final states. \(L(M) = \emptyset \).