{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "cc9bf87d-5b60-4dac-a52c-d2ab8de6de2f", "metadata": {}, "outputs": [], "source": [ "import mysql.connector\n", "from mysql.connector import Error\n", "\n", "import pandas as pd\n" ] }, { "cell_type": "markdown", "id": "342b00b9-ad17-4d2f-aba5-afece48e1aa1", "metadata": {}, "source": [ "Short demo of the work of Python MySQL connectivity in the context of a Jupyter Labs Notebook." ] }, { "cell_type": "code", "execution_count": null, "id": "a6b5bacd-c5b4-4ff7-9129-2fa7a82c3689", "metadata": {}, "outputs": [], "source": [ "# setup\n", "\n", "pwdfileName = 'pss' ## I am \"hiding\" my password in the pss file\n", "pwdfile = open(pwdfileName,'r') ## opening the password file for reading\n", "p = pwdfile.read()[:-1] ## extracting the password\n", "\n", "\n", "hostName = 'mysql.labthreesixfive.com'\n", "portName = '3306'\n", "userName = 'dekhtyar'\n", "passString = p\n", "\n", "dbName = 'DEMOS'\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "07adf0b8-2936-47d7-add8-cf78a6511de4", "metadata": {}, "outputs": [], "source": [ "### set up MySQL connection\n", "\n", "try:\n", " \n", " conn = mysql.connector.connect(host = hostName, port = portName, database = dbName,\n", " user = userName, password = passString)\n", " if conn.is_connected():\n", " print('Connected to ',hostName)\n", " p=''\n", "except Error as e:\n", " print('Connection Error:', e)\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "f03fc79c-844b-494d-8908-e2f0c524a1b5", "metadata": {}, "outputs": [], "source": [ "# let's see what's in the DEMOS database\n", "\n", "c1 = conn.cursor()\n", "\n", "c1.execute('show tables')\n", "tbl = pd.DataFrame(c1)" ] }, { "cell_type": "code", "execution_count": null, "id": "2fcd77b1-df23-4ac9-bf90-ab740158fe3d", "metadata": {}, "outputs": [], "source": [ "tbl.columns=['Table']\n", "\n", "tbl" ] }, { "cell_type": "markdown", "id": "e28be021-177b-4485-a7e0-8b6f46314dbf", "metadata": {}, "source": [ "Let's print the contents of each table" ] }, { "cell_type": "code", "execution_count": null, "id": "5d53bb41-5b93-4078-8136-276892c4548b", "metadata": {}, "outputs": [], "source": [ "for t in tbl['Table']:\n", " c2 = conn.cursor()\n", " c2.execute('SELECT * FROM '+ t)\n", " records = c2.fetchall()\n", " print('------ '+t+'----------\\n')\n", " for r in records:\n", " print(r)\n", " print('----------------------\\n\\n')\n", " \n", " " ] }, { "cell_type": "markdown", "id": "b6244a23-3024-4bf3-b6ac-17e2b268eb70", "metadata": {}, "source": [ "run the cell below at the very end of your session to close the connection" ] }, { "cell_type": "code", "execution_count": null, "id": "fc590047-1e58-4372-9da3-e99e1bd883d8", "metadata": {}, "outputs": [], "source": [ "if conn.is_connected():\n", " c2.close()\n", " c1.close()\n", " conn.close()\n", " print('Done')\n" ] }, { "cell_type": "code", "execution_count": null, "id": "102b78c7-042c-443f-9ba3-e3ac95c943a5", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }