The Book of the Class for cpe 453
Spring 2019

Phillip L. Nico
Department of Computer Science
California Polytechnic State University
San Luis Obispo, CA 93407
pnico@calpoly.edu

DRAFT(June 5, 2019 at 12:56)

Abstract

These are my lecture notes and nothing more. That means that they are full of omissions and errors and were meant only as a means of helping me remember what I intended to talk about in class. They may or may not bear any resemblance to what was actually said. They may, however, be useful in providing some small insight into the author’s state of mind and approach to the course material.
Contents

0 Syllabus 1

1 Lecture: Introduction and Background 11
1.1 Robust Programming 11
1.2 Background: The Ballad of the Unknown Stuntman 12
1.3 Syllabus 12
1.4 How to succeed in this course 16
1.5 The Last Page 16
1.6 Foundations 16
1.6.1 What an operating system is 16
1.6.2 Virtualization and Transparency 17
1.6.3 What an operating system is not 17
1.7 Major subjects for the quarter 17
1.8 This quarter 18

2 Lecture: History and Definition of an O.S. 19
2.1 Announcements 19
2.2 About the lab 20
2.3 About the assignment 20
2.4 Everything you wanted to know about C development 20
2.5 Aside: Review of 357 20
2.5.1 Review of Unix IO 20
2.5.2 Processes, etc. 21
2.5.3 Compilation 21
2.5.4 Tool of the week: Make(1) 21
2.6 Defining of an Operating System: The System Calls 22

3 Lecture: The Process Model 23
3.1 Announcements 23
3.2 Two stories 24
3.3 Defining of an Operating System: The System Calls 24
3.4 System Calls Again 24
3.5 System Call Mechanisms 24
3.5.1 How to do it 24
3.6 OS Pre-history: The boot process 25
3.6.1 How it all begins (on an Intel PC with a floppy) 25
3.6.2 How it continues 25
3.6.3 And onwards: How does the OS get control back? 25
3.7 OS History 29
3.7.1 Ancient times 29
3.7.2 The middle ages 29
3.7.3 The renaissance: families 29
3.7.4 Modern Times 30
4 Lecture: Operating System Structures
4.1 Announcements ... 31
4.2 From last time: History 32
 4.2.1 The middle ages 32
 4.2.2 The renaissance: families 32
 4.2.3 Modern Times 33
4.3 From last time: The Process (Users' View) 33
4.4 The Operating System's view: The context 34
4.5 Example of a context switch 34
4.6 System Calls Again 36
4.7 System Call Mechanisms 36
 4.7.1 How to do it .. 36
 4.7.2 And onwards .. 36

5 Lecture: Intro. to Concurrency 37
5.1 Announcements ... 37
5.2 Onwards .. 37
5.3 The Process Model: a little deeper 37
5.4 Pseudoparallelism and nondeterminism 38
5.5 Possible process states 38
5.6 Scheduling ... 39
5.7 What about IPC? ... 39
5.8 Operating System Structures 39
 5.8.1 Monolithic Systems 40
 5.8.2 Layered Systems 40
 5.8.3 Virtual Machines 41
 5.8.4 Client-server model 41
5.9 The Layered Architecture of Minix 41
5.10 Example: Description a MINIX disk interrupt 42

6 Lecture: Lightweight Processes 43
6.1 Announcements ... 43
 6.1.1 From last time: Client-server model 44
6.2 The Layered Architecture of Minix 44
6.3 Example: Description a MINIX disk interrupt 44
6.4 Once again: Processes 45
6.5 Lightweight Processes: Threads 45
6.6 Introduction to Asgn2 46
 6.6.1 Nine little functions 46
 6.6.2 Demonstration: threading in action 46
 6.6.3 Review: context switch 47
 6.6.4 A thread's context: stack and registers 47
6.7 What's this about libraries, then? 51
<table>
<thead>
<tr>
<th>Lecture: Concurrency and Synchronization</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Announcements</td>
<td>52</td>
</tr>
<tr>
<td>7.2 LWP</td>
<td>52</td>
</tr>
<tr>
<td>7.3 Problems with parallelism: Race Conditions</td>
<td>53</td>
</tr>
<tr>
<td>7.3.1 Race condition, defined</td>
<td>53</td>
</tr>
<tr>
<td>7.4 Critical Sections</td>
<td>53</td>
</tr>
<tr>
<td>7.5 Mutual Exclusion</td>
<td>54</td>
</tr>
<tr>
<td>7.6 Busy Waiting: Software Only</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture: More Synchronization</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Announcements</td>
<td>55</td>
</tr>
<tr>
<td>8.2 LWP?</td>
<td>55</td>
</tr>
<tr>
<td>8.3 From Last time: Busy waiting</td>
<td>56</td>
</tr>
<tr>
<td>8.4 Onwards: Busy Waiting: With Hardware Support</td>
<td>56</td>
</tr>
<tr>
<td>8.5 Reflection</td>
<td>57</td>
</tr>
<tr>
<td>8.5.1 sleep() and wakeup()</td>
<td>57</td>
</tr>
<tr>
<td>8.6 Synchronization without busy waiting</td>
<td>58</td>
</tr>
<tr>
<td>8.7 Semaphores</td>
<td>58</td>
</tr>
<tr>
<td>8.7.1 Monitors: (Hoare 1974, Brinch Hansen 1975)</td>
<td>59</td>
</tr>
<tr>
<td>8.8 More Interprocess Communication</td>
<td>59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture: Even More Concurrency</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Announcements</td>
<td>61</td>
</tr>
<tr>
<td>9.2 Synchronization without busy waiting</td>
<td>61</td>
</tr>
<tr>
<td>9.3 Sleep and Wakeup</td>
<td>61</td>
</tr>
<tr>
<td>9.4 Semaphores</td>
<td>62</td>
</tr>
<tr>
<td>9.4.1 Monitors: (Hoare 1974, Brinch Hansen 1975)</td>
<td>62</td>
</tr>
<tr>
<td>9.5 More Interprocess Communication</td>
<td>63</td>
</tr>
<tr>
<td>9.5.1 Further generalization: message passing</td>
<td>63</td>
</tr>
<tr>
<td>9.6 Classic IPC Problems</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture: Scheduling</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Announcements</td>
<td>66</td>
</tr>
<tr>
<td>10.2 We talked a lot about LWP</td>
<td>66</td>
</tr>
<tr>
<td>10.2.1 From Last Time: Further generalization: message passing</td>
<td>67</td>
</tr>
<tr>
<td>10.3 Classic IPC Problems</td>
<td>67</td>
</tr>
<tr>
<td>10.4 So what: Scheduling</td>
<td>68</td>
</tr>
<tr>
<td>10.4.1 Process States</td>
<td>68</td>
</tr>
<tr>
<td>10.4.2 Policy vs. Mechanism</td>
<td>68</td>
</tr>
<tr>
<td>10.4.3 Process types</td>
<td>69</td>
</tr>
<tr>
<td>10.4.4 When to schedule</td>
<td>69</td>
</tr>
<tr>
<td>10.4.5 Evaluation Criteria</td>
<td>69</td>
</tr>
<tr>
<td>10.4.6 Non-preemptive shedding: run-to-completion</td>
<td>70</td>
</tr>
<tr>
<td>10.4.7 Preemptive shedding</td>
<td>70</td>
</tr>
</tbody>
</table>
11 Lecture: Scheduling, this time for real

11.1 Announcements ... 71
11.2 Classic IPC Problems .. 71
 11.2.1 From Last time: Process types 72
 11.2.2 When to schedule 72
 11.2.3 Evaluation Criteria 72
 11.2.4 Non-preemptive scheduling: run-to-completion 73
 11.2.5 Preemptive scheduling 73

12 Lecture: MINIX IO Architecture 74

12.1 Announcements ... 74
12.2 Aside: Reentrancy ... 74
 12.2.1 From Last time: Process types 75
 12.2.2 When to schedule 75
 12.2.3 Evaluation Criteria 75
 12.2.4 Non-preemptive scheduling: run-to-completion 76
 12.2.5 Preemptive scheduling 76
12.3 Minix architecture revisited 76
12.4 Minix 2 Scheduling .. 77
12.5 Minix 3 Scheduling .. 77
 12.5.1 Three-level scheduling 78
12.6 Scheduling Example .. 78
12.7 Minix IPC .. 78
12.8 Minix structures .. 79
12.9 Where do we go from here? 79
12.10 Input/Output .. 79
12.11 Devices ... 79
12.12 Deadlock and its avoidance 79
 12.12.1 Deadlock Avoidance Methods 81

13 Lecture: Managing Multiple Resources 82

13.1 Announcements ... 82
13.2 Where do we go from here? 82
13.3 Input/Output .. 82
13.4 Devices ... 83
13.5 Deadlock and its avoidance 83
 13.5.1 Deadlock Avoidance Methods 84
13.6 Banker’s Algorithm (Dijkstra, 1965) 84
 13.6.1 Single Resource 85
13.7 Managing Multiple Resources 85
 13.7.1 Resource Trajectories 87
13.8 Managing Multiple Resources, cont. 87
 13.8.1 Multi-way bankers’ 87
13.9 Wrapping up deadlock avoidance 88
List of Figures

1. A Linux `open()` implementation .. 26
2. Minix `open()` implementation ... 27
3. Minix `syscall()` ... 27
4. Minix `sendrec()` abstracted .. 28
5. The process of a context switch .. 35
6. Possible states for a process .. 38
7. The lowest layer of the operating system 39
8. Layout of the Minix system .. 41
9. Layout of the Minix system .. 44
10. Stack development (Remember that the real stack is upside-down) 49
11. Peterson's solution for mutual exclusion 56
12. A producer-consumer implementation with a race condition 57
13. A semaphore-based producer-consumer implementation 58
14. A monitor-based solution to the producer-consumer problem 60
15. A semaphore-based producer-consumer implementation 62
16. A monitor-based solution to the producer-consumer problem 64
17. A message-passing solution to the producer-consumer problem.. 65
18. A message-passing solution to the producer-consumer problem.. 68
19. Possible states for a process .. 68
20. Layout of the Minix system .. 77
21. How a deadlock forms .. 80
22. How a deadlock forms .. 83
23. One dimensional example of Dijkstra's Bankers Algorithm 85
24. Another example, but one that doesn't wedge immediately 86
25. Resource trajectory example from Tanenbaum 87
26. Multi-dimensional Bankers Algorithm 89
27. Resource trajectory example from Tanenbaum 91
28. Multi-dimensional Bankers Algorithm 92
29. Minix IO .. 94
30. Minix IO .. 105
31. Histogram of scores for the midterm 115
32. Virtual Memory translation in the MMU (4k pages) 125
33. Virtual Memory translation in the MMU (4k pages) 129
34. Partition table entry .. 143
35. Anatomy of a disk ... 143
36. Anatomy of a filesystem .. 143
37. Minix superblock .. 144
38. Minix inode ... 145
39. Minix directory ent ... 145
40. useful Minix numbers ... 146
41. A minix file with 16-byte blocks and 4-byte zone numbers 149
42. Partition table entry .. 150
43. Anatomy of a disk ... 151
44. Anatomy of a filesystem .. 151
45. Minix superblock .. 152
46. Minix inode ... 152
47 Minix directory ent .. 153
48 useful Minix numbers .. 153
49 Partition table entry .. 156
50 Anatomy of a disk ... 156
51 Anatomy of a filesystem ... 156
52 Minix superblock ... 157
53 Minix inode ... 158
54 Minix directory ent ... 158
55 useful Minix numbers ... 159
56 The (metadata) entries of a Master File Table 166
57 The NTFS Attributes ... 166
58 Bobby Tables ... 174

List of Tables

1 Integer registers of the x86 CPU 47